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An algebraic stack is said to have the resolution property if every
quasi-coherent sheaf of finite-type is the quotient of a vector bundle.
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The Totaro—Gross Theorem relates the resolution property to
quotients by group actions.
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The Resolution Property

The Totaro—Gross Theorem relates the resolution property to
quotients by group actions.

Theorem ([Totaro, 2004, Gross, 2017

Let X be a quasi-compact quasi-separated algebraic stack. Then the
following are equivalent:

m X has affine stabilizer groups at closed points and satisfies the
resolution property.

m X =[U/GL,] where U is a quasi-affine scheme with an action of
GL,,. In particular, X has affine diagonal.
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Note that the resolution property always holds for
(quasi-)projective schemes.
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The Resolution Property

Note that the resolution property always holds for
(quasi-)projective schemes.

So, this property becomes interesting only in the non-projective
situation where, however, very little is known about it.
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Definition

An algebraic stack X is said to have the I-resolution property if it admits
a vector bundle V such that every quasi-coherent sheaf of finite-type on
X is a quotient of V®" for some natural number n.
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The 1-Resolution Property

Definition

An algebraic stack X is said to have the I-resolution property if it admits
a vector bundle V such that every quasi-coherent sheaf of finite-type on
X is a quotient of V®" for some natural number n.

We will say that such a V is special.
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The 1-Resolution Property

The 1-resolution property descends along finite finitely presented
covers.
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The 1-resolution property descends along finite finitely presented
covers.

Lemma ([Gross, 2017

Let X — Y be a faithfully flat finite and finitely presented morphism of
algebraic stacks. If X has the 1-resolution property then so does Y.
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The 1-resolution property descends along finite finitely presented
covers.

Lemma ([Gross, 2017

Let X — Y be a faithfully flat finite and finitely presented morphism of
algebraic stacks. If X has the 1-resolution property then so does Y.

And can be pulled back along quasi-affine morphisms.
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covers.
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Let X — Y be a faithfully flat finite and finitely presented morphism of
algebraic stacks. If X has the 1-resolution property then so does Y.

And can be pulled back along quasi-affine morphisms.

Lemma ([Gross, 2017

Let X — Y be a quasi-affine morphism of algebraic stacks. If Y has the
I-resolution property then so does X.
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The 1-Resolution Property

The 1-resolution property descends along finite finitely presented
covers.

Lemma ([Gross, 2017

Let X — Y be a faithfully flat finite and finitely presented morphism of
algebraic stacks. If X has the 1-resolution property then so does Y.

And can be pulled back along quasi-affine morphisms.

Lemma ([Gross, 2017

Let X — Y be a quasi-affine morphism of algebraic stacks. If Y has the
I-resolution property then so does X.

These results also hold for the resolution property.
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The 1-Resolution Property

Hall and Rydh considered this property for algebraic stacks and
posed the following question ([Hall and Rydh, 2017, 7.4]):

Question

Does every algebraic stack with the 1-resolution property admit a finite
flat covering by a quasi-affine scheme? Moreover, is every algebraic space
with the 1-resolution property quasi-affine?
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The 1-Resolution Property

Hall and Rydh considered this property for algebraic stacks and
posed the following question ([Hall and Rydh, 2017, 7.4]):

Question

Does every algebraic stack with the 1-resolution property admit a finite
flat covering by a quasi-affine scheme? Moreover, is every algebraic space
with the 1-resolution property quasi-affine?

In this talk we will try and answer this question under moderate
hypotheses. We have the following theorem (joint with Amit
Hogadi and Siddharth Mathur):
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The 1-Resolution Property

Theorem ([DHM20])

Let X be a Noetherian, quasi-excellent and normal algebraic stack whose
stabilizers at closed points are affine. Then we have:

m X has the 1-resolution property if and only if there exists a finite
flat covering U — X with U a quasi-affine scheme.
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The 1-Resolution Property

A result of David Rydh gives us the following corollary.

Corollary

An algebraic space X (Noetherian, quasi-excellent, and normal) has the
1-resolution property if and only if it is quasi-affine.
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m For finite group G, BG has the 1-resolution property.
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m For finite group G, BG has the 1-resolution property.
m BG,, and BG; do not have the 1-resolution property.
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Some Examples

m For finite group G, BG has the 1-resolution property.
m BG,, and BG; do not have the 1-resolution property.

m A DVR with a doubled point does not have the 1-resolution
property.
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The 1-Resolution Property

Some Examples

m For finite group G, BG has the 1-resolution property.

m BG,, and BG; do not have the 1-resolution property.

m A DVR with a doubled point does not have the 1-resolution
property.

m Any projective variety over a field with the 1-resolution
property is a set of points.
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We can take the example of the DVR with a doubled point further.
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We can take the example of the DVR with a doubled point further.
Let X be a scheme with two maps from a DVR f1,f : SpecR — X
which agree on the quotient field K O R.
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We can take the example of the DVR with a doubled point further.
Let X be a scheme with two maps from a DVR f1,f : SpecR — X
which agree on the quotient field K O R.

We can glue the maps f; and f; along Spec K, and get map f from
Spec R with a doubled point to X.
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The 1-Resolution Property

We can take the example of the DVR with a doubled point further.
Let X be a scheme with two maps from a DVR f1,f : SpecR — X
which agree on the quotient field K O R.

We can glue the maps f; and f; along Spec K, and get map f from
Spec R with a doubled point to X.

Using the pullback property, we see that if a scheme X has the

1-resolution property, it must be separated (using valuative criteria
for separatedness).
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More generally, we have the following:
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More generally, we have the following:

Lemma ([DHM20])

Let X be a qcgs algebraic stack whose stabilizer groups at closed points
are affine. If X’ has the 1-resolution property then X is separated, and
hence has finite diagonal.
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Theorem ([DHM, 2020])

Let X be a Noetherian, quasi-excellent and normal algebraic stack whose
stabilizers at closed points are affine. Then we have X has the

1-resolution property if and only if there exists a finite flat covering
U — X with U a quasi-affine scheme.
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Theorem ([DHM, 2020])

Let X be a Noetherian, quasi-excellent and normal algebraic stack whose
stabilizers at closed points are affine. Then we have X has the

1-resolution property if and only if there exists a finite flat covering
U — X with U a quasi-affine scheme.

m Prove that if X is a scheme, it is quasi-affine.
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Strategy of Proof

Theorem ([DHM, 2020])

Let X be a Noetherian, quasi-excellent and normal algebraic stack whose
stabilizers at closed points are affine. Then we have X has the

1-resolution property if and only if there exists a finite flat covering
U — X with U a quasi-affine scheme.

m Prove that if X is a scheme, it is quasi-affine.

m Starting from a proper flat covering, use the slicing strategy of
Kresch-Vistoli as in [Kresch and Vistoli, 2004] to produce a

finite flat scheme covering, and conclude from the scheme
case.

The 1-Resolution Property for Algebraic Stacks Neeraj Deshmukh



Proof of the Theorem
(o] le}

The 1-Resolution Property for Algebraic Stacks Neeraj Deshmukh



Proof of the Theorem
(o] le}

The proof in the scheme case is an argument by Noetherian
induction which requires openness of the regular locus. This is
ensured by the quasi-excellence hypothesis.
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ensured by the quasi-excellence hypothesis.

The original argument of Kresch and Vistoli works for any
Deligne-Mumford stack over a field.
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The proof in the scheme case is an argument by Noetherian
induction which requires openness of the regular locus. This is
ensured by the quasi-excellence hypothesis.

The original argument of Kresch and Vistoli works for any
Deligne-Mumford stack over a field.

The following result extends their argument to the arithmetic
setting of stacks with finite diagonal over Spec Z.
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Theorem ([DHM20])

Let X be a quasi-compact algebraic stack with finite diagonal and denote
by X the corresponding coarse moduli space. Suppose that X has the
resolution property and that X admits an ample line bundle. Then X
admits a finite flat cover Z — X where Z is a scheme with an ample line
bundle.
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Let X be a quasi-compact algebraic stack with finite diagonal and denote
by X the corresponding coarse moduli space. Suppose that X has the
resolution property and that X admits an ample line bundle. Then X
admits a finite flat cover Z — X where Z is a scheme with an ample line
bundle.

Observe that this technique needs the existence of an ample line
bundle on the coarse space.
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Theorem ([DHM20])

Let X be a quasi-compact algebraic stack with finite diagonal and denote
by X the corresponding coarse moduli space. Suppose that X has the
resolution property and that X admits an ample line bundle. Then X
admits a finite flat cover Z — X where Z is a scheme with an ample line
bundle.

Observe that this technique needs the existence of an ample line
bundle on the coarse space.

Our hypotheses (Noetherian, normal and quasi-excellent) on X
ensure this.
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Approximation

We can use limit arguments to eliminate the Noetherian, and
quasi-excellence hypotheses on X.
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Approximation

We can use limit arguments to eliminate the Noetherian, and
quasi-excellence hypotheses on X.

This, however, only works in characteristic zero, since it uses the
fact that GL, is linearly reductive in characteristic zero.
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The argument roughly goes as follows:
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The argument roughly goes as follows:

m X can be written as a limit limy X, where each X, is an
algebraic stack of finite type over Spec Q and all the maps
X — X, are affine and schematically dominant.
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Approximation

The argument roughly goes as follows:

m X can be written as a limit limy X, where each X, is an
algebraic stack of finite type over Spec Q and all the maps
X — X, are affine and schematically dominant.

m The special vector bundle on X descend to a special vector
bundle at some finite stage X, for which the result has been
proved.
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Approximation

The argument roughly goes as follows:

m X can be written as a limit limy X, where each X, is an
algebraic stack of finite type over Spec Q and all the maps
X — X, are affine and schematically dominant.

m The special vector bundle on X descend to a special vector
bundle at some finite stage X, for which the result has been
proved.

m Base change the finite flat cover to X, which is quasi-affine
because the map X — X, is affine.
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This gives us the following strengthening of our theorem.

Theorem ([DHM20])

Let X /SpecQ be a qcgs integral normal algebraic stack whose stabilizers
at closed points are affine. Then we have:

m X has the I-resolution property if and only if there exists a finite
flat covering U — X with U a quasi-affine scheme.
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This gives us the following strengthening of our theorem.

(

Let X /SpecQ be a qcgs integral normal algebraic stack whose stabilizers
at closed points are affine. Then we have:

Theorem ([DHM20])

m X has the I-resolution property if and only if there exists a finite
flat covering U — X with U a quasi-affine scheme.

In particular, if such an X is an algebraic space then it must
already be quasi-affine.
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Beyond the normal

m As it stands, answering Question 6 in complete generality is
beyond the scope of our methods and would require new and
innovative techniques.
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Beyond the normal

m As it stands, answering Question 6 in complete generality is
beyond the scope of our methods and would require new and
innovative techniques.

m Another direction is to try and remove the normality
hypothesis. It is not clear how to do this even in the scheme
case. To that, we ask the following questions. A positive
answer to these question will help generalise the above
theorems to the non-normal setting.
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Question

Let X,Y,Z be quasi-affine schemes which are finite-type over an
excellent Noetherian scheme. Suppose we have a closed immersion

Y — X and a finite morphism Y — Z, then does the resulting pushout
X Uy Z admit an ample family of line bundles?
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Question

Let X,Y,Z be quasi-affine schemes which are finite-type over an
excellent Noetherian scheme. Suppose we have a closed immersion

Y — X and a finite morphism Y — Z, then does the resulting pushout
X Uy Z admit an ample family of line bundles?

Question

Let X be an algebraic stack which is finite-type over an excellent base
and suppose X has the 1-resolution property. Does the coarse moduli
space of X have the 1-resolution property?
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