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In this talk we will discuss absolute Noetherian approximation and limit re-
sults for schemes. These are the standard techniques used to eliminate Noethe-
rian hypothesis from theorem statements. We will discuss the precise statements
of these results, and also look at how they are applied in practice. Standard
references are [DG67, Part 4 §8], [TT90, Appendix C] and [Sta18]. We will
primarily follow the exposition in the Stacks project [Sta18, Tag 01YT].

A lot of the LATEX code in this document has been shamelessly copied from
the stacks project repository on GitHub1.

1 Colimits and limits

Let us begin by recalling what a limit is. The dual notion is that of a colimit.
Let C be a category. A diagram in C is simply a functor M : I → C. We

say that I is the index category or that M is an I-diagram. We will use the
notation Mi to denote the image of the object i of I. Hence for φ : i → i′ a
morphism in I we have M(φ) : Mi →Mi′ .

Definition 1.2. A limit of the I-diagram M in the category C is given by an
object limIM in C together with morphisms pi : limIM →Mi such that

1. for φ : i→ i′ a morphism in I we have pi′ = M(φ) ◦ pi, and

2. for any object W in C and any family of morphisms qi : W →Mi (indexed
by i ∈ I) such that for all φ : i → i′ in I we have qi′ = M(φ) ◦ qi there
exists a unique morphism q : W → limIM such that qi = pi ◦ q for every
object i of I.

Limits are (if they exist) unique up to unique isomorphism by the uniqueness
requirement in the definition. Products of pairs, fibred products, and equalizers
are examples of limits. The limit over the empty diagram is a final object of C.
In the category of sets all limits exist. The dual notion is that of colimits.

Definition 1.4. A colimit of the I-diagram M in the category C is given by an
object colim IM in C together with morphisms si : Mi → colim IM such that

1Thank you Aise Johan de Jong et al. for TeX-ing all that math!
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1. for φ : i→ i′ a morphism in I we have si = si′ ◦M(φ), and

2. for any object W in C and any family of morphisms ti : Mi →W (indexed
by i ∈ I) such that for all φ : i → i′ in I we have ti = ti′ ◦M(φ) there
exists a unique morphism t : colim IM →W such that ti = t◦si for every
object i of I.

While the above definitions are valid in arbitrary generality, we often restrict
ourselves to the situation where the indexing category has nice properties, like
being a set. This makes the (co)limits easy to construct.

Definition 1.6. Let (I,≤) be a directed2 set. Let C be a category.

1. A system over I in C, sometimes called a inductive system over I in C is
given by objects Mi of C and for every i ≤ i′ a morphism fii′ : Mi →Mi′

such that fii = id and such that fii′′ = fi′i′′ ◦ fii′ whenever i ≤ i′ ≤ i′′.

2. An inverse system over I in C, sometimes called a projective system over
I in C is given by objects Mi of C and for every i′ ≤ i a morphism
fii′ : Mi → Mi′ such that fii = id and such that fii′′ = fi′i′′ ◦ fii′
whenever i′′ ≤ i′ ≤ i. (Note reversal of inequalities.)

Our primary interest is limits in the cateogory of schemes. Hence, the fol-
lowing colimit is important for us:

Example 1.7 (colimit of rings). Let (Ri, µi,j) be a directed system of rings in-
dexed by I. We define the limit as

colimRi = {(tiRi)/∼ | xi ∼ µi,j(xi) for any i ∈ I and xi ∈Mi}

Since I is directed, we define addition and multiplication using the fact that
any elements xi ∈ Ri and xj ∈ Rj eventually land in a common ring Rk. The
equivalence relation used to define colimRi ensures that these operations are
well-defined.

2 Limit constructions on Schemes

We will now describe limit constructions in the category of schemes.

2.1 Standard limit constructions

In what follows we will often deal with the following setup.

Setup: Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
indexed over I. Assume that the morphisms fii′ : Si → Si are affine. We will
be interested in the limit S = limi Si.

2This means that given i, j ∈ I there exists a k such that i, j ≤ k
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Remark 2.1. If the Si’s are affine, then we automatically have a corresponding
direct system of ring (Ri, fii′) such that SpecRi = Si. Then

lim
i
Si = lim SpecRi

= Spec (colimRi)

Thus, limi Si exists.

More generally, we have the following:

Lemma 2.2. Let I be a directed set. Let (Si, fii′) be an inverse system of
schemes over I. If all the morphisms fii′ : Si → Si′ are affine, then the limit
S = limi Si exists in the category of schemes. Moreover,

1. each of the morphisms fi : S → Si is affine,

2. for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−10 (U0) = lim
i≥0

f−1i0 (U0)

in the category of schemes.

The proof builds on the remark above. Fix an element 0 ∈ I. Then, for all
i ≥ 0, we can write Si = Spec S0

Ai, where Ai = (fi0)∗OSi
. And we construct

S as Spec S0
A, where A = colim i≥0Ai. The Ai’s are quasi coherent sheaves on

S0. Hence, their colimit A exists and is quasi-coherent (since this is true for
rings!).

It suffices to compute the limit over i ≥ 0, because I is a directed set. If j is
some element of I not related to 0, we can find a k such that k ≥ j and k ≥ 0.

This construction has many nice properties. For example, S inherits the in-
verse limit topology. Moreover, the construction of S commutes with formation
of fibre products over S0.

Lemma 2.3. Let I be a directed set. Let (Si, fii′) be an inverse system of
schemes over I. Assume all the morphisms fii′ : Si → Si′ are affine, Let
S = limi Si. Let 0 ∈ I. Suppose that T is a scheme over S0. Then

T ×S0
S = lim

i≥0
T ×S0

Si

You can say more things. For example, assume that the inverse system is
taken over quasi-compact and quasi-separated schemes. Properties of the limit
are often exhibited at some finite stage in the inverse system. The following
“meta-theorem” is often true.

Meta-theorem 1: Let P be a property of schemes, and (Si, fii′) be an inverse
system of qcqs schemes with affine bonding maps. If S has P, then there exists
an i0 ∈ I such that Si has P for all i ≥ i0.

Such a statement holds for many properties of schemes: quasi-affine, affine,
separated, etc.
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We also have situations where it is sufficient to find some i for which Si has
P.

Meta-theorem 2: Let P be a property of schemes, and (Si, fii′) be an inverse
system of qcqs schemes with affine bonding maps. If S has P, then there exists
an i ∈ I such that Si has P.

For example, this is true for an ample line bundle on S: Let L0 be a line
bundle on S0. If the pullback L to S is ample, then for some i ∈ I the pullback
Li to Si is ample.

Strictly speaking the content of Meta-theorem 2 is not different from that
in Meta-theorem 1: in most situations if Si has P for some i, then Sj has P
for all j ≥ i. But we state them as different statement to point out that for
applications, it often suffices to “descend” properties for some i.

The above discussion also holds for properties of morphisms. That is, con-
sider the following situation:

Relative Setup: Let S = limSi be a limit of a directed system of schemes with
affine transition morphisms (Lemma 2.2). Let 0 ∈ I and let f0 : X0 → Y0 be a
morphism of schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-
separated. Let fi : Xi → Yi be the base change of f0 to Si and let f : X → Y
be the base change of f0 to S.

Observe that fi’s define an inverse system with limit f . Thus, we can ap-
proximate properties of f by the fi’s. The Meta-theorems 1 & 2 also “hold” for
properties of morphisms of schemes.

2.2 Absolute Noetherian approximation

Following is the statement of absolute Noetherian approximation3 (see [Sta18,
Tag 07RN] for a more general version).

Lemma 2.4. Let S be a quasi-compact and quasi-separated scheme. There exist
a directed set I and an inverse system of schemes (Si, fii′) over I such that

1. the transition morphisms fii′ are affine

2. each Si is of finite type over Z, and

3. S = limi Si.

As you can see, this lets us write any quasi-compact and quasi-separated
scheme as an inverse limit of Noetherian schemes. Coupled with “Meta-theorems
1 & 2”, this allows us to reduce statements on S to statements on the Noetherian
schemes Si. Moreover, since the projection maps S → Si are affine, we can
pullback various properties of Si to S. We will see more about this in the
applications.

3The adjective “absolute” refers to the fact that we are working over Z
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Sketch of proof. The proof is by induction on an affine cover of S. Note that
if S is affine, then this is just a statement about commutative rings. Any
commutative ring can be written as an inverse limits over its finite type subrings.
Let S = U∪V , where U = U1∪. . .∪Un−1 is covered by n−1 affine opens, and V
is affine. Assume by induction that the statement holds for U , i.e, U = limi Ui.
Then, W := U ∩ V is a quasi-compact open in U , and we can assume that
W = limiWi over an inverse system of quasi-compact opens of Ui’s. Also,
W ⊂ V is quasi-affine. The idea now is to leverage the W sitting inside V to
construct an inverse system {Vi} for V of finite type Z-algebras, which patches
with the inverse system {Ui} along the Wi’s.

You might wonder if something similar is true for the relative case. In
the relative case (over a base B), one can approximate quasi-compact quasi-
separated objects over B by finitely presented object over B4:

Lemma 2.5. Let f : S → B be a morphism of schemes. Assume that

1. S is quasi-compact and quasi-separated, and

2. B is quasi-separated.

Then S = limSi is a limit of a directed system of schemes Si of finite presen-
tation over B with affine transition morphisms over B.

Idea of proof. Note that the image f(S) ⊂ B is quasi-compact, so we can replace
B with f(S). The details are a bit involved, but the idea is to apply Lemma
2.4 on both S and B, and construct an inverse system {Xa ×fa,b,Sb

S} where
the morphisms fa,b : Xa → Sb commute with the projection maps. This works
because all the limits involved are filtered.

3 Applications

We will now look at a few applications of the above constructions.

General principle of approximation techniques

Approximation techniques usually work as follows:

1. Approximate the given object by Noetherian objects or, if we are working
over an arbitrary base B, by finitely presented objects over B.

2. Use the Meta-theorems to descend properties of the limit to some finite
stage in the inverse system. This reduces the problem to the situation
where everything is finitely presented.

3. Pullback along the projection maps to conclude the original case. Since
the projection maps are affine, most properties can be pulled back along
it.

4Since the base need not be Noetherian (unlike Z), we have to replace finite type with
finitely presented.
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3.1 Chevalley’s affineness theorem

Consider the following result of Chevalley characterising affine schemes:

Theorem 3.1 (Chevalley). Let X → S be a finite surjective morphism of
schemes with S Noetherian. If X is affine then so is S.

We will use approximation and remove the Noetherian assumption on S:

Theorem 3.2 (Non-Noetherian Chevalley). Let f : X → S be a morphism of
schemes. Assume that f is surjective and finite, and assume that X is affine.
Then S is affine.

Sketch of Proof. Since f is finite surjective and X is affine, we see that S is
quasi-compact and separated. Note that since S is not Noetherian, f is not
autoamtically of finite presentation despite being finite.

The idea now is to apply approximation simulataneously for f and S, i.e,
we will approximate f by a surjective, finite and finitely presented morphism,
and at the same time approximate S by a Noetherian scheme. If S = limi∈I Si
is an approximation of S, then since the projection maps S → Si are affine, it
suffices to prove that some Si is affine,

We can write X = limaXa with Xa → S finite and of finite presentation.
Moreover, we can arrange that Xa is affine for some a ∈ A. Replacing X by Xa

we may assume that X → S is surjective, finite, of finite presentation and that
X is affine.

We may write S = limi∈I Si as a directed limits of schemes of finite type over
Z. After shrinking I, we can assume that there exist schemes Xi → Si of finite
presentation such that Xi′ = Xi ×S Si′ for i′ ≥ i and such that X = limiXi.
We can further assume that Xi is affine and that Xi → Si is finite for all i ∈ I.
And now we are in the Noetherian case.

In fact, we can do slightly better.

Theorem 3.3. Let f : X → S be a morphism of schemes. Assume that f is
surjective and integral, and assume that X is affine. Then S is affine.

The idea is that we can approximate an integral surjective map by finite sur-
jective maps. That is, we can write X = limiXi with Xi → S finite, surjective
and Xi affine for all i sufficiently large. Now use Theorem 3.2.

3.2 The 1-Resolution property

The following notion was first defined by Jack Hall and David Rydh in [HR17]:

Definition 3.4. A scheme X is said to have the 1-resolution property if it
admits a vector bundle V such that every quasi-coherent sheaf of finite-type on
X is a quotient of V ⊕n for some natural number n. We say that such a V is
special.
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Theorem 3.5 (D-Hogadi). (See [DHM20, Theorem 1.3]) Let X be a Noethe-
rian, quasi-excellent and normal scheme. Then X has the 1-resolution property
if and only if it is quasi-affine scheme.

This result was motivated by a question asked by Jack Hall and David Rydh
in [HR17, 7.4].

Using approximation we can eliminate the Noetherian hypothesis from the
above theorem but only in characteristic 0.

Theorem 3.8 (D-Hogadi-Mathur). (See [DHM20, Theorem 1.5]) Let X/SpecQ
be a qcqs integral normal scheme. Then X has the 1-resolution property if and
only if it is quasi-affine scheme.

Idea. The argument goes as follows:

Step 1: X can be written as a limit limλXλ where each Xλ is of finite type over
SpecQ and all the maps X → Xλ are affine and schematically dominant.
We can choose Xλ’s to be normal.

Step 2: The special vector bundle on X descends to a special vector bundle at
some finite stage Xα (This step needs characteristic zero!). But Xα is
finite type ove Q, so is quasi-affine by the Noetherian case.

Step 3: Since the projection map X → Xα is affine, the result follows.

A fact used in Step 2 is that GLn is linearly reductive in characteristic 0,
i.e, every representation can be written as a direct sum of irreducible represen-
tations. This is not true characterisitic p, so the argument breaks down.

Question 3.11. Is it still possible to do approximation in characteristic p?

3.3 Chow’s lemma

Consider the Noetherian version of Chow’s Lemma [DG67, II Theorem 5.6.1(a)].

Theorem 3.12 (Chow). Let S be a Noetherian scheme. Let f : X → S be a
separated morphism of finite type. Then there exists an n ≥ 0 and a diagram

X X ′ Pn
S

S

π

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, we may arrange it such that there exists a dense open subscheme
U ⊂ X such that π−1(U)→ U is an isomorphism.

We can prove this result with the relaxed hypothesis that S is quasi-compact
and quasi-separated. However, the price paid is that we have to assume that X
has finitely many irreducible components.
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Theorem 3.13 (Non-Noetherian Chow). Let S be a quasi-compact and quasi-
separated scheme. Let f : X → S be a separated morphism of finite type.
Assume that X has finitely many irreducible components. Then there exists an
n ≥ 0 and a diagram

X X ′ Pn
S

S

π

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, there exists an open dense subscheme U ⊂ X such that π−1(U)→ U
is an isomorphism of schemes.

If X does not have finitely many irreducible components, then we can still
prove Theorem 3.13, but we have to forego the quasi-projective open dense U .

Sketch of proof. Let X = Z1∪. . .∪Zn be the decomposition of X into irreducible
components. Let ηk ∈ Zk be the generic point.

By approximation, we can find a closed immersion X → Y where Y is
separated and of finite presentation over S. Apply Noetherian approxiamtion
to S and write S = limi Si as a directed limit of Noetherian schemes. Further,
we can find an index i ∈ I and a scheme Yi over Si such that Yi → Si separated
and of finite presentation, so that Y = S×Si

Yi. For i′ ≥ i, write Yi′ = Si′×Si
Yi.

Then Y = limi′≥i Yi′ , by Lemma 2.3. For every j ≥ i, we have the following
diagram

ηk ∈ Zk X Y Yj

S Sj

Denote h : X → Yj the composition. Let Y ′ ⊂ Yj be the scheme theoretic
image of h : X → Yj . Y

′ is separated and of finite presentation over Sj which
is Noetherian. We will now apply the Noetherian case to Y ′ → Sj , and then
pullback the result to X → S.

The only thing to ensure is that the images of the generic points ηk do not
specialise to each other, i.e, the closures h(ηk) are distinct components in Y ′.
Again by using approximation we can find a j large enough such that this is
true.

Now, apply Theorem 3.12 to the morphism Y ′ → Sj . This gives a diagram

Y ′ Y ∗ Pn
Si

Sj

π
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such that π is proper and surjective and an isomorphism over a dense open
subscheme V ⊂ Y ′. Base change the above diagram to S along the projection
map S → Sj , and take X ′ := X ×Y ′ Y ∗ and U = h−1(V ). Thus, we get maps

X
π← X ′ → Pn

S , such that π is an isomorphism on U ⊂ X.
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