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1. Moving frames

In this note we describe the structure of Euclidean space using Élie Cartan’s
method of moving frames. More precisely, we wish to describe behaviour of a point
as it moves in space. To do this, we will attach a frame to each point in space,
which will serve as a “frame of reference” for the geometry around that point. The
space of all configurations of a point together with a reference frame is given by,

Euc(n) =




1 ∗

x A

 : x ∈ Rn , AAt = Id

 .

Here, A represents an n× n orthogonal matrix satisfying the above relation. Also,
Euc(n) forms a group under matrix multiplication and is isomorphic to the (semi)
direct product Rn×O(n). Geometrically, Euc(n) describes all rigid motions of the
Euclidean space Rn, i.e, it is the collection of all distance-preserving differentiable
isomorphisms α : Rn → Rn. A map α : Rn → Rn is said to be distance-preserving
if for any x,y ∈ Rn, α(x) · α(y) = x · y

We wish to measure how “geometric data” varies from one point to next, and
write down differential equations that control this behaviour. While the calculation
presented below work for any n, for the sake of simplicity we will restrict our
attention to the three dimensional Euclidean space, R3.

Let M be a point in space. We consider an orthogonal frame at M given by three
mutually perpendicular unit vectors I1, I2, I3. This system of a point together with
an orthogonal frame gives a trihedron T := (M, I1, I2, I3) and can be thought as
being a point of Euc(3). In order to write down differential equations, we work
in local coordinates of Euc(3). It is important to note that there does not exist
a global coordinate system on Euc(3). This is because Euc(3) contains rotations
which cannot be described by a single continuous parameter.

The coordinate system we choose can be described around a point by six param-
eters (u1, . . . , u6), representing the coordinates of M and the Euler angles defining
the orthogonal frame (with respect to the standard axes). We will be interested
in the behaviour of T as we vary the parameters ui’s. The object described by T
with respect to the varying ui’s is what we call a moving frame.

2. The Maurer-Cartan Equations

Let T ′ = (M ′, I ′1, I
′
2, I
′
3) be another trihedron which is infinitesimally close to T ,

i.e,

M ′ −M = dM

I ′k − Ik = dIk, k = 1, 2, 3
1
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Projecting the infinitesimal displacements dM and dIk onto the axes Ik of T ,
we get a system of differential equations,

dM = ωiIi,

dIi = ωj
i Ij

(1)

where we use the summation convention on the index repeating above and below.
Here, the ωi, ωj

i are differential 1-forms in the coordinates (ui). Also, the vectors
Ik’s form an orthogonal frame, i.e, Ii · Ij = δij . Differentiating we get, dIi · Ij +

Ii · dIj = 0. This gives us another set of equations, ωj
i + ωi

j = 0. So, in fact, (1) is

described by six differential forms, ωi, ωj
i . Thus, any moving frame satisfies (1) in

terms of the six forms ωi, ωj
i . Conversely, one may ask,

Question 1. Given six forms ωi, ωj
i of an infinitesimal displacement of an orthonor-

mal trihedron, does there exist a family of trihedrons admitting these components
(as in (1))? Or to put it another way, when is such a system of 1-forms integrable?

To answer this we take the above system (1) and apply exterior differentiation,

dIi ∧ ωi + Iidω
i = 0

dIj ∧ ωj
i + Ijdω

j
i = 0.

Substituting the values of dIi’s and rearranging terms, we get,

dωi = ωj ∧ ωi
j

dωj
i = ωk

i ∧ ω
j
k

(2)

Hence, if a solution of (1) exists, it must satify (2). The Theorem of Cartan is
that, in fact, this condition is also sufficient.

Theorem 2. [2, §26] If the differential forms ωi, ωj
i satisfy (2), then for a given ini-

tial trihedron T0 they define a moving frame obtained from the T0 by an appropriate
affine transformation.

The equations (2) are also called the Maurer-Cartan equations.

3. Vistas

One can also extend this analysis to any manifold. In this setting, however, the
system (2) of differential 2-forms may fail to hold, giving rise to non-trivial 2-forms,

dωi − ωj ∧ ωi
j = Ωi

dωj
i − ω

k
i ∧ ω

j
k = Ωj

i

(3)

The 2-forms Ωi, Ωj
i together describe the curvature of the manifold. In this

sense, curvature of a manifold maybe thought of as the failure of a system of
differential 1-forms to be integrable (as in Question 1). The components Ωi describe

the translation part of the curvature, whereas the Ωj
i ’s describe the associated

rotation (cf. [1, §36]).
For a Riemannian manifold, the translation part is zero by definition. This

is because the Ωi’s describe the torsion tensor. Moreover, the Ωj
i ’s describe the

Riemann curvature tensor (cf. [2, Chapter 16]).
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A moving frame, as described above, can be thought of as an integrable subman-
ifold of the group Euc(3). Moreover, the differential forms ωi, ωj

i , together describe
a Lie algebra-valued 1-form ω with values in the Lie algebra of Euc(3). Further,
Euc(3) admits a canonical left-invariant Lie algebra-valued 1-form which for any
g ∈ Euc(3) is given by ωEuc(3) := g−1dg. This is known as the (left-invariant)

Maurer-Cartan form of Euc(3)1. This point of view admits generalisation to any
Lie group. In this language, Theorem 2 can be stated as,

Theorem 3. [3, Theorem 3.6.1] Let G be a Lie group with Lie algebra g. Denote
by ωG the Maurer-Cartan form of G. Let ω be a g-valued 1-form on a smooth
manifold M satisfying the Maurer-Cartan equations. Then, for each point p ∈M ,
there is a neighbourhood U of p and a smooth map f : U → G such that f∗ωG = ω.
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1More generally for any Lie group G, the Maurer-Cartan form of G, is the g-valued form

ωG : T (G) → g given by ωG(v) = Lg−1∗(v), for any v ∈ Tg(G). Here, Lg represents left

multiplication by g. Every left-invariant differential form on G arises out of ωG. For example, if
n = dim(G),

∧n(ωG) is the Haar measure on G.


